Python Examples of arch.nn.AdaptiveAvgPool2d (2023)

The following are30Code examples forTorch.nn.AdaptiveAvgPool2d().You can upvote those you like or downvote those you don't and go back to the original project or source file by following the links above each example. You can also check all available functions/classes of the moduleLanterna.nn, or attemptsthe search function.

Example 1

source file:rfp.pyOutside ofmm detectioncomApache 2.0 License7voicesPython Examples of arch.nn.AdaptiveAvgPool2d (2)Python Examples of arch.nn.AdaptiveAvgPool2d (3)
def __init__(self, in_channels, out_channels, dilatations=(1, 3, 6, 1)): super().__init__() Assertion dilatations[-1] == 1 self.aspp = nn.ModuleList() for dilatation in Dilations: kernel size = 3 if dilation > 1 else 1, padding = dilation if dilation > 1 else 0, conv = nn.Conv2d(in_channels, out_channels, kernel_size=kernel_size, step=1, dilation=dilation, padding= padding, bias =True) self.aspp.append(conv) self.gap = nn.AdaptiveAvgPool2d(1) self.init_weights()

Configure a Windows host for Ansible...

Configure a Windows host for Ansible - ansible WinRM

Example #2

source file:detnet_backbone.pyOutside ofcascade-rcnn_PytorchcomMY license6voicesPython Examples of arch.nn.AdaptiveAvgPool2d (4)Python Examples of arch.nn.AdaptiveAvgPool2d (5)
def __init__(self, block, layer, num_classes=1000): self.inplanes = 64 super(DetNet, self).__init__() self.conv1 = nn.Conv2d(3, 64, kernel_size=7, passo=2, padding =3, bias=False) self.bn1 = nn.BatchNorm2d(64) self.relu = nn.ReLU(inplace=True) self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) self .layer1 = self._make_layer(block, 64, Schichten[0]) self.layer2 = self._make_layer(block, 128, Schichten[1], passo=2) self.layer3 = self._make_layer(block, 256, Schichten [2], passo=2) self.layer4 = self._make_new_layer(256, Schichten[3]) self.layer5 = self._make_new_layer(256, Schichten[4]) self.avgpool = nn.AdaptiveAvgPool2d(1) self. fc = nn.Linear(1024, num_classes) para m em self.modules(): if isinstance(m, nn.Conv2d): n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels m. weight.data.normal_(0, math.sqrt(2. / n)) elif isinstance(m, nn.BatchNorm2d): m.weight.data.fill_(1) m.bias.data.zero_()

Example #3

source file:detnet_backbone.pyOutside ofcascade-rcnn_PytorchcomMY license6voicesPython Examples of arch.nn.AdaptiveAvgPool2d (6)Python Examples of arch.nn.AdaptiveAvgPool2d (7)
def __init__(self, block, layer, num_classes=1000): self.inplanes = 64 super(DetNet, self).__init__() self.conv1 = nn.Conv2d(3, 64, kernel_size=7, passo=2, padding =3, bias=False) self.bn1 = nn.BatchNorm2d(64) self.relu = nn.ReLU(inplace=True) self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) self .layer1 = self._make_layer(block, 64, Schichten[0]) self.layer2 = self._make_layer(block, 128, Schichten[1], passo=2) self.layer3 = self._make_layer(block, 256, Schichten [2], passo=2) self.layer4 = self._make_new_layer(256, Schichten[3]) self.layer5 = self._make_new_layer(256, Schichten[4]) self.avgpool = nn.AdaptiveAvgPool2d(1) self. fc = nn.Linear(1024, num_classes) para m em self.modules(): if isinstance(m, nn.Conv2d): n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels m. weight.data.normal_(0, math.sqrt(2. / n)) elif isinstance(m, nn.BatchNorm2d): m.weight.data.fill_(1) m.bias.data.zero_()

Example #4

source file:ResNetV2.pyOutside ofRedes PytorchcomMY license6voicesPython Examples of arch.nn.AdaptiveAvgPool2d (8)Python Examples of arch.nn.AdaptiveAvgPool2d (9)
def __init__(self,block,block_list): super(ResNet,self).__init__() self.head_conv = nn.Sequential( nn.Conv2d(3,64,7,2,3,bias=False), nn.BatchNorm2d (64), nn.ReLU(inplace=True),) self.maxpool_1 = nn.MaxPool2d(3,2,1) b_ = block.expansion self.layer_1 = self._make_layer(block,64,64*b_,block_list [0],1) self.layer_2 = self._make_layer(block,64*b_,128*b_,block_list[1],2) self.layer_3 = self._make_layer(block,128*b_,256*b_,block_list [2],2) self.layer_4 = self._make_layer(block,256*b_,512*b_,block_list[3],2) self.avgpool_1 = nn.AdaptiveAvgPool2d((1,1)) self.fc_1 = nn .Sequencial( nn.Flatten(), nn.Linear(512*b_,1000), nn.Softmax(dim = 1),) self._initialization()

Example #5

(Video) torch.nn.Conv2d Module Explained

source file:ResNeXt2016.pyOutside ofRedes PytorchcomMY license6voicesPython Examples of arch.nn.AdaptiveAvgPool2d (10)Python Examples of arch.nn.AdaptiveAvgPool2d (11)
def __init__(self,block,block_list,cardinality): super(ResNet,self).__init__() self.head_conv = nn.Sequential( nn.Conv2d(3,64,7,2,3,bias=False), nn .BatchNorm2d(64), nn.ReLU(inplace=True),) self.maxpool_1 = nn.MaxPool2d(3,2,1) b_ = block.expansion self.layer_1 = self._make_layer(block,64,128*b_,block_list [0],1,Kardinalität) self.layer_2 = self._make_layer(block,128*b_,256*b_,block_list[1],2,cardinalidade) self.layer_3 = self._make_layer(block,256*b_,512 *b_,Blockliste[2],2,Kardinalität) self.layer_4 = self._make_layer(block,512*b_,1024*b_,block_list[3],2,Kardinalität) self.avgpool_1 = nn.AdaptiveAvgPool2d((1, 1)) self.fc_1 = nn.Sequential( nn.Flatten(), nn.Linear(1024*b_,1000), nn.Softmax(dim = 1),) self._initialization()

Example #6

source file:DenseNet2016.pyOutside ofRedes PytorchcomMY license6voicesPython Examples of arch.nn.AdaptiveAvgPool2d (12)Python Examples of arch.nn.AdaptiveAvgPool2d (13)
def __init__(self,k,block_list,num_init_features=64, bn_size=4, drop_rate=0, memory_ficient=False): super(DenseNet,self).__init__() self.head_conv = nn.Sequential( nn.Conv2d(3, num_init_features,7,2,3,bias=False), nn.BatchNorm2d(num_init_features), nn.ReLU(inplace=True),) self.maxpool_1 = nn.MaxPool2d(3,2,1) self.dense_body, self. final_channels = self._make_layers(num_init_features, bn_size,block_list,k,drop_rate, memory_eficiente) self.avgpool_1 = nn.AdaptiveAvgPool2d((1,1)) self.fc_1 = nn.Sequential( nn.Flatten(), nn.Linear( self.final_channels,1000), nn.Softmax(dim = 1),) self._initialization()

Example #7

source file:MobileNet.pyOutside ofRedes PytorchcomMY license6voicesPython Examples of arch.nn.AdaptiveAvgPool2d (14)Python Examples of arch.nn.AdaptiveAvgPool2d (15)
def __init__(self,): super(MobileNet_V1,self).__init__() self.conv = nn.Sequential(BasicConv(3,32,3,2,1), DPConv(32,64,1), DPConv(64,128 ,2), DPConv(128.128,1), DPConv(128.256,2), DPConv(256.256,1), DPConv(256.512,2), DPConv(512.512,1), DPConv(512.512,1), DPConv(512.512, 1), DPConv(512.512,1), DPConv(512.512,1), DPConv(512.1024,2), DPConv(1024,1024,1),) self.final = nn.Sequential( nn.AdaptiveAvgPool2d(1), nn .Flatten(), nn.Linear(1024,1000), nn.Softmax(dim=1) )

Example #8

source file:base.pyOutside ofrápido-MPN-COVcomMY license6voicesPython Examples of arch.nn.AdaptiveAvgPool2d (16)Python Examples of arch.nn.AdaptiveAvgPool2d (17)
def _reconstruct_inception(self, basemodel): model = nn.Module() model.features = nn.Sequential(basemodel.Conv2d_1a_3x3, basemodel.Conv2d_2a_3x3, basemodel.Conv2d_2b_3x3, nn.MaxPool2d(kernel_size=3, stride=2), basemodel. Conv2d_3b_1x1, Basismodell.Conv2d_4a_3x3, nn.MaxPool2d(kernel_size=3, passo=2), Basismodell.Mixed_5b, Basismodell.Mixed_5c, Basismodell.Mixed_5d, Basismodell.Mixed_6a, Basismodell.Mixed_6b, Basismodell.Mixed_6c, Basismodell.Mixed_6c, Basismodell.Mixed_6a, Basismodell.Mixed_6b, Basismodell.Mixed_6c, Basedismodell. , basemodel.Mixed_7a, basemodel.Mixed_7b, basemodel.Mixed_7c) model.representation = nn.AdaptiveAvgPool2d((1, 1)) model.classifier = basemodel.fc model.representation_dim=basemodel.fc.weight.size(1) Rückgabemodell

Example #9

source file:simple_attention.pyOutside ofargus-freesoundcomMY license6voicesPython Examples of arch.nn.AdaptiveAvgPool2d (18)Python Examples of arch.nn.AdaptiveAvgPool2d (19)
def __init__(self, num_classes, base_size=64, dropout=0.2, ratio=16, kernel_size=7): super().__init__() self.conv = nn.Sequential( ConvBlock(in_channels=3, out_channels=base_size), ConvBlock(in_channels=base_size, out_channels=base_size*2), ConvBlock(in_channels=base_size*2, out_channels=base_size*4), ConvBlock(in_channels=base_size*4, out_channels=base_size*8), ) self.attention = ConvolutionalBlockAttentionModule( base_size*8, ratio=ratio, kernel_size=kernel_size) self.avg_pool = nn.AdaptiveAvgPool2d(1) self.fc = nn.Sequential( nn.Dropout(dropout), nn.Linear(base_size*8, base_size*2), nn.PReLU(), nn.BatchNorm1d(base_size*2), nn.Dropout(dropout/2), nn.Linear(base_size*2, num_classes), )

Example #10

source file:operador.pyOutside ofFixed_SegcomApache 2.0 License6voicesPython Examples of arch.nn.AdaptiveAvgPool2d (20)Python Examples of arch.nn.AdaptiveAvgPool2d (21)
def __init__(self, in_planes, out_planes, redução=1, norm_layer=nn.BatchNorm2d): super(FeatureFusion, self).__init__() self.conv_1x1 = ConvBnRelu(in_planes, out_planes, 1, 1, 0, has_bn=True, norm_layer=norm_layer, has_relu=True, has_bias=False) self.channel_attention = nn.Sequential( nn.AdaptiveAvgPool2d(1), ConvBnRelu(out_planes, out_planes // Reduzierung, 1, 1, 0, has_bn=False, norm_layer=norm_layer, has_relu=True, has_bias=False), ConvBnRelu(out_planes // Reduzierung, out_planes, 1, 1, 0, has_bn=False, norm_layer=norm_layer, has_relu=False, has_bias=False), nn.Sigmoid() )

Example #11

source file:roi_box_predictors.pyOutside ofRes2Net-Masks rcnncomMY license6voicesPython Examples of arch.nn.AdaptiveAvgPool2d (22)Python Examples of arch.nn.AdaptiveAvgPool2d (23)
(Video) Torch.nn.Linear Module explained
def __init__(self, config, in_channels): super(FastRCNNPredictor, self).__init__() behaupten in_channels ist nicht None num_inputs = in_channels num_classes = config.MODEL.ROI_BOX_HEAD.NUM_CLASSES self.avgpool = nn.AdaptiveAvgPool2d(1) self.cls_score = nn.Linear(num_inputs, num_classes) num_bbox_reg_classes = 2 if config.MODEL.CLS_AGNOSTIC_BBOX_REG else num_classes self.bbox_pred = nn.Linear(num_inputs, num_bbox_reg_classes * 4) nn.init.normal_(self.cls_score.weight, mean=0, std=0,01) nn.init.constant_(self.cls_score.bias, 0) nn.init.normal_(self.bbox_pred.weight, mean=0, std=0,001) nn.init.constant_(self.bbox_pred.bias, 0)

Example #12

source file:MobileNetV3.pyOutside ofMobileNetV3-pytorchcomMY license6voicesPython Examples of arch.nn.AdaptiveAvgPool2d (24)Python Examples of arch.nn.AdaptiveAvgPool2d (25)
def __init__(self, inplanes, num_classes, expplanes1, expplanes2): super(LastBlockLarge, self).__init__() self.conv1 = nn.Conv2d(inplanes, expplanes1, kernel_size=1, bias=False) self.bn1 = nn. BatchNorm2d(expplanes1) self.act1 = HardSwish(inplace=True) self.avgpool = nn.AdaptiveAvgPool2d(1) self.conv2 = nn.Conv2d(expplanes1, expplanes2, kernel_size=1, stride=1) self.act2 = HardSwish( inplace=True) self.dropout = nn.Dropout(p=0.2, inplace=True) self.fc = nn.Linear(expplanes2, num_classes) self.expplanes1 = expplanes1 self.expplanes2 = expplanes2 self.inplanes = inplanes self.num_classes = Anzahl_Klassen

Example #13

source file:MobileNetV3.pyOutside ofMobileNetV3-pytorchcomMY license6voicesPython Examples of arch.nn.AdaptiveAvgPool2d (26)Python Examples of arch.nn.AdaptiveAvgPool2d (27)
def __init__(self, inplanes, num_classes, expplanes1, expplanes2): super(LastBlockSmall, self).__init__() self.conv1 = nn.Conv2d(inplanes, expplanes1, kernel_size=1, bias=False) self.bn1 = nn. BatchNorm2d(expplanes1) self.act1 = HardSwish(inplace=True) self.se = SqEx(expplanes1) self.avgpool = nn.AdaptiveAvgPool2d(1) self.conv2 = nn.Conv2d(expplanes1, expplanes2, kernel_size=1, stride= 1, bias=False) self.act2 = HardSwish(inplace=True) self.dropout = nn.Dropout(p=0.2, inplace=True) self.fc = nn.Linear(expplanes2, num_classes) self.expplanes1 = expplanes1 self .expplanes2 = expplanes2 self.inplanes = inplanes self.num_classes = num_classes

Example #14

source file:squeeze_excitation.pyOutside ofParsing-R-CNNcomMY license6voicesPython Examples of arch.nn.AdaptiveAvgPool2d (28)Python Examples of arch.nn.AdaptiveAvgPool2d (29)
def __init__(self, inplanes, kernel=3, redução=16, with_padding=False): super(GDWSe2d, self).__init__() if with_padding: padding = kernel // 2 else: padding = 0 self.globle_dw = nn. Conv2d(inplanes, inplanes, kernel_size=kernel, padding=padding, stride=1, groups=inplanes, bias=False) self.bn = nn.BatchNorm2d(inplanes) self.relu = nn.ReLU(inplace=True) self. avg_pool = nn.AdaptiveAvgPool2d(1) self.fc = nn.Sequential( nn.Linear(Inplanes, Inplanes // Reduktion), nn.ReLU(inplace=True), nn.Linear(Inplanes // Reduktion, Inplanes), nn .Sigmoid() ) self._init_weights()

Example #15

source file:Outputs.pyOutside ofParsing-R-CNNcomMY license6voicesPython Examples of arch.nn.AdaptiveAvgPool2d (30)Python Examples of arch.nn.AdaptiveAvgPool2d (31)
def __init__(self, dim_in): super().__init__() self.dim_in = dim_in self.cls_on = cfg.FAST_RCNN.CLS_ON self.reg_on = cfg.FAST_RCNN.REG_ON if self.cls_on: self.cls_score = nn.Linear (self.dim_in, cfg.MODEL.NUM_CLASSES) init.normal_(self.cls_score.weight, std=0.01) init.constant_(self.cls_score.bias, 0) # self.avgpool = nn.AdaptiveAvgPool2d(1) if self .reg_on: if cfg.FAST_RCNN.CLS_AGNOSTIC_BBOX_REG: # bg und fg self.bbox_pred = nn.Linear(self.dim_in, 4 * 2) sonst: self.bbox_pred = nn.Linear(self.dim_in, 4 * cfg.MODEL. NUM_CLASSES) init.normal_(self.bbox_pred.weight, std=0.001) init.constant_(self.bbox_pred.bias, 0)

Example #16

source file:roi_box_predictors.pyOutside ofR2CNN.pytorchcomMY license6voicesPython Examples of arch.nn.AdaptiveAvgPool2d (32)Python Examples of arch.nn.AdaptiveAvgPool2d (33)
def __init__(self, config, in_channels): super(FastRCNNPredictor, self).__init__() behaupten in_channels ist nicht None num_inputs = in_channels num_classes = config.MODEL.ROI_BOX_HEAD.NUM_CLASSES self.avgpool = nn.AdaptiveAvgPool2d(1) self.cls_score = nn.Linear(num_inputs, num_classes) num_bbox_reg_classes = 2 if config.MODEL.CLS_AGNOSTIC_BBOX_REG else num_classes self.bbox_pred = nn.Linear(num_inputs, num_bbox_reg_classes * 4) self.quad_pred = nn.Linear(num_inputs, num_bbox_reg_classes * 8) init. normal_(self.cls_score.weight, average=0, std=0,01) nn.init.constant_(self.cls_score.bias, 0) nn.init.normal_(self.bbox_pred.weight, average=0, std= 0,001) nn.init.constant_(self.bbox_pred.bias, 0) nn.init.normal_(self.quad_pred.weight, mean=0, std=0,001) nn.init.constant_(self.quad_pred.bias, 0)

Example #17

source file:context_block.pyOutside ofmm detectioncomApache 2.0 License5voicesPython Examples of arch.nn.AdaptiveAvgPool2d (34)Python Examples of arch.nn.AdaptiveAvgPool2d (35)
def __init__(self, in_channels, ratio, pooling_type='att', fusion_types=('channel_add', )): super(ContextBlock, self).__init__() assert pooling_type in ['avg', 'att'] assert isinstance( fusion_types, (list, tuple)) valid_fusion_types = ['channel_add', 'channel_mul'] assert all([f in valid_fusion_types for f in fusion_types]) assert len(fusion_types) > 0, 'mindestens eine Fusion sollte verwendet werden' self . in_channels = in_channels self.ratio = proporção self.planes = int(in_channels * proporção) self.pooling_type = pooling_type self.fusion_types = fusion_types if pooling_type == 'att': self.conv_mask = nn.Conv2d(in_channels, 1, kernel_size = 1) self.softmax = nn.Softmax(dim=2) sonst: self.avg_pool = nn.AdaptiveAvgPool2d(1) se 'channel_add' em fusion_types: self.channel_add_conv = nn.Sequential( nn.Conv2d(self.in_channels, self .planes, kernel_size=1), nn.LayerNorm([self.planes, 1, 1]), nn.ReLU(inplace=True), # yapf: disable nn.Conv2d(self.planes, self.in_channels, kernel_size = 1)) filho: eu .channel_add_conv = Keine, wenn 'channel_mul' in fusion_types: self.channel_mul_conv = nn.Sequential( nn.Conv2d(self.in_channels, self.planes, kernel_size=1), nn.LayerNorm([self.planes, 1, 1] ), nn .ReLU(inplace=True), # yapf: nn.Conv2d(self.planes, self.in_channels, kernel_size=1) deaktivieren sonst: self.channel_mul_conv = Keine self.reset_parameters()

Example #18

(Video) nn.MaxPool2d in PyTorch

source file:merge_cells.pyOutside ofmm detectioncomApache 2.0 License5voicesPython Examples of arch.nn.AdaptiveAvgPool2d (36)Python Examples of arch.nn.AdaptiveAvgPool2d (37)
def __init__(self, in_channels=Nenhum, out_channels=Nenhum, **kwargs): super().__init__(in_channels, out_channels, **kwargs) self.global_pool = nn.AdaptiveAvgPool2d((1, 1))

Example #19

source file:ResNet.pyOutside oftransfer learningcomMY license5voicesPython Examples of arch.nn.AdaptiveAvgPool2d (38)Python Examples of arch.nn.AdaptiveAvgPool2d (39)
def __init__(self, block, layer, num_classes=1000,zero_init_residual=False, groups=1, width_per_group=64, norm_layer=None): super(ResNet, self).__init__() if norm_layer ist None: norm_layer = nn.BatchNorm2d self.inplanes = 64 self.groups = Gruppen self.base_width = width_per_group self.conv1 = nn.Conv2d(3, self.inplanes, kernel_size=7, passo=2, padding=3, bias=False) self.bn1 = norm_layer (self.inplanes) self.relu = nn.ReLU(inplace=True) self.maxpool = nn.MaxPool2d(kernel_size=3, passo=2, padding=1) self.layer1 = self._make_layer(block, 64, Schichten [0], norm_layer=norm_layer) self.layer2 = self._make_layer(block, 128, Schichten[1], passo=2, norm_layer=norm_layer) self.layer3 = self._make_layer(block, 256, Schichten[2], stride=2, norm_layer=norm_layer) self.layer4 = self._make_layer(block, 512, layer[3], stride=2, norm_layer=norm_layer) self.avgpool = nn.AdaptiveAvgPool2d((1, 1)) self.fc = nn.Linear(512 * block.expansion, num_classes) für m in self.modules(): if isinstance(m, nn.Co nv2d): nn.i nit.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu') elif isinstance(m, (nn.BatchNorm2d, nn.GroupNorm)): nn.init.constant_(m. peso, 1) nn. init.constant_(m.bias, 0) if zero_init_residual: for m in self.modules(): if isinstance(m, Gargalo): nn.init.constant_(m.bn3.weight, 0) elif isinstance(m, BasicBlock ): nn.init.constant_(m.bn2.weight, 0)

Example #20

source file:Darknet2016.pyOutside ofRedes PytorchcomMY license5voicesPython Examples of arch.nn.AdaptiveAvgPool2d (40)Python Examples of arch.nn.AdaptiveAvgPool2d (41)
def __init__(self,block_config): super(_DarkNet,self).__init__() self.headconv = nn.Sequential(BasicConv(3,32,3,1,1)) self.in_dim = 32 self.layers = self. _make_layers(block_config) self.final = nn.Sequential( nn.AdaptiveAvgPool2d(1), nn.Flatten(), nn.Linear(1024,1000), nn.Softmax(dim=1) )

Example #21

source file:SEmodule2017.pyOutside ofRedes PytorchcomMY license5voicesPython Examples of arch.nn.AdaptiveAvgPool2d (42)Python Examples of arch.nn.AdaptiveAvgPool2d (43)
def __init__(self,in_dim,ratio): super(SElayer,self).__init__() self.gap = nn.AdaptiveAvgPool2d((1,1)) Reduced_dim = max(1, in_dim//ratio) self.fc1 = nn .Sequential(nn.Flatten(), nn.Linear(in_dim, Reduced_dim), #_Swish(), nn.ReLU(inplace=True), nn.Linear(reduce_dim, in_dim), nn.Softmax(dim=1), )

Example #22

source file:ShuffleNet.pyOutside ofRedes PytorchcomMY license5voicesPython Examples of arch.nn.AdaptiveAvgPool2d (44)Python Examples of arch.nn.AdaptiveAvgPool2d (45)
def __init__(self,block_config,groups): super(_ShuffleNet,self).__init__() self.head_conv = nn.Sequential( nn.Conv2d(3,24,3,2,1,bias=False), nn.BatchNorm2d (24), nn.ReLU(inplace=True),) self.maxpool_1 = nn.MaxPool2d(3,2,1) self.layer_1 = self._make_layer(24,block_config[0][1],block_config[0] [0],Gruppen) self.layer_2 = self._make_layer(block_config[0][1],block_config[1][1],block_config[1][0],grupos) self.layer_3 = self._make_layer(block_config[ 1][1],block_config[2][1],block_config[2][0],grupos) self.avgpool_1 = nn.AdaptiveAvgPool2d((1,1)) self.fc_1 = nn.Sequential( nn.Flatten( ), nn.Linear(1536,1000), nn.Softmax(dim = 1),)

Example #23

source file:EfficientNet2019.pyOutside ofRedes PytorchcomMY license5voicesPython Examples of arch.nn.AdaptiveAvgPool2d (46)Python Examples of arch.nn.AdaptiveAvgPool2d (47)
def __init__(self): super(EfficientNet_B0,self).__init__() self.HeadConv = _Conv(3,32,3,2,1) self.MBConv1_1 = _MBConv(32,16,1,3,1,0.2, 4) self.MBConv6_1 = _MBConv(16,24,6,3,2,0.2,4) self.MBConv6_2 = _MBConv(24,24,6,3,1,0.2,4) self.MBConv6_3 = _MBConv(24, 40,6,5,2,0.2,4) self.MBConv6_4 = _MBConv(40,40,6,5,1,0.2,4) self.MBConv6_5 = _MBConv(40,80,6,3,2,0,2, 4) self.MBConv6_6 = _MBConv(80,80,6,3,1,0.2,4) self.MBConv6_7 = _MBConv(80,80,6,3,1,0.2,4) self.MBConv6_8 = _MBConv(80,112, 6,5,1,0.2,4) self.MBConv6_9 = _MBConv(112,112,6,5,1,0.2,4) self.MBConv6_10 = _MBConv(112,112,6,5,1,0.2,4) self.MBConv6_11 = _MBConv(112,192,6,5,2,0.2,4) self.MBConv6_12 = _MBConv(192,192,6,5,1,0.2,4) self.MBConv6_13 = _MBConv(192,192,6,5,1,0.2,4) self.MBConv6_14 = _MBConv(192,192,6,5,1,0.2,4) self.MBConv6_15 = _MBConv(192,320,6,3,1,0.2,4) self.logits = nn.Sequential( #_Conv(320,1280 ,1,1,0), nn.AdaptiveAvgPool2d((1,1)), nn.Flatten(), nn.Linear(320,1000), nn.Softmax(dim=1))

Example #24

source file:RegNet2020.pyOutside ofRedes PytorchcomMY license5voicesPython Examples of arch.nn.AdaptiveAvgPool2d (48)Python Examples of arch.nn.AdaptiveAvgPool2d (49)
(Video) torch.nn.Embedding explained (+ Character-level language model)
def __init__(self, w_in, nc): super(AnyHead, self).__init__() self.avg_pool = nn.AdaptiveAvgPool2d((1, 1)) self.fc = nn.Linear(w_in, nc, bias=True)

Example #25

source file:RegNet2020.pyOutside ofRedes PytorchcomMY license5voicesPython Examples of arch.nn.AdaptiveAvgPool2d (50)Python Examples of arch.nn.AdaptiveAvgPool2d (51)
def __init__(self, w_in, w_se): super(SE, self).__init__() self.avg_pool = nn.AdaptiveAvgPool2d((1, 1)) self.f_ex = nn.Sequential( nn.Conv2d(w_in, w_se, 1, bias=True), nn.ReLU(inplace=True), nn.Conv2d(w_se, w_in, 1, bias=True), nn.Sigmoid(), )

Example #26

source file:MnasNet2018.pyOutside ofRedes PytorchcomMY license5voicesPython Examples of arch.nn.AdaptiveAvgPool2d (52)Python Examples of arch.nn.AdaptiveAvgPool2d (53)
def __init__(self,in_dim,ratio): super(_SElayer,self).__init__() self.gap = nn.AdaptiveAvgPool2d((1,1)) Reduced_dim = max(1, in_dim//ratio) self.fc1 = nn .Sequential(nn.Flatten(), nn.Linear(in_dim, Reduced_dim), nn.ReLU(inplace=True), nn.Linear(reduce_dim, in_dim), nn.Softmax(dim=1),)

Example #27

source file:MnasNet2018.pyOutside ofRedes PytorchcomMY license5voicesPython Examples of arch.nn.AdaptiveAvgPool2d (54)Python Examples of arch.nn.AdaptiveAvgPool2d (55)
def __init__(self): super(MnasNet_A1,self).__init__() self.HeadConv = _Conv(3,32,3,2,1) self.Seq_1 = _SepConv(32,16,3) self.MBConv6_1 = _MBConv( 16,24,6,3,2) self.MBConv6_2 = _MBConv(24,24,6,3,1) self.MBConv3_1 = _MBConv(24,40,3,5,2,4) self.MBConv3_2 = _MBConv( 40,40,3,5,1,4) self.MBConv3_3 = _MBConv(40,40,3,5,1,4) self.MBConv6_3 = _MBConv(40,80,6,3,2) self.MBConv6_4 = _MBConv(80,80,6,3,1) self.MBConv6_5 = _MBConv(80,80,6,3,1) self.MBConv6_6 = _MBConv(80,80,6,3,1) self.MBConv6_7 = _MBConv( 80,112,6,3,1,4) self.MBConv6_8 = _MBConv(112,112,6,3,1,4) self.MBConv6_9 = _MBConv(112,160,6,5,2,4) self.MBConv6_10 = _MBConv(160,160, 6,5,1,4) self.MBConv6_11 = _MBConv(160,160,6,5,1,4) self.MBConv6_12 = _MBConv(160,320,6,3,1) self.logits = nn.Sequential( nn.AdaptiveAvgPool2d( (1,1)), nn.Flatten(), nn.Linear(320,1000), nn.Softmax(dim=1))

Example #28

source file:effnet.pyOutside ofRedes PytorchcomMY license5voicesPython Examples of arch.nn.AdaptiveAvgPool2d (56)Python Examples of arch.nn.AdaptiveAvgPool2d (57)
def __init__(self, w_in, w_se): super(SE, self).__init__() self.avg_pool = nn.AdaptiveAvgPool2d((1, 1)) self.f_ex = nn.Sequential( nn.Conv2d(w_in, w_se,". ". ". 1, bias=True), Swish(), nn.Conv2d(w_se, w_in, 1, bias=True), nn.Sigmoid(), );

Example #29

source file:NIN2013.pyOutside ofRedes PytorchcomMY license5voicesPython Examples of arch.nn.AdaptiveAvgPool2d (58)Python Examples of arch.nn.AdaptiveAvgPool2d (59)
def __init__(self): super(NIN,self).__init__() self.net_layers=nn.Sequential( nn.Conv2d(3,96,11,4,0), nn.ReLU(), nn.Conv2d(96 ,96,1,1,0), nn.ReLU(), nn.Conv2d(96,96,1,1,0), nn.ReLU(), nn.Conv2d(96,256,5,1,2), nn.ReLU(), nn.Conv2d(256,256,1,1,0), nn.ReLU(), nn.Conv2d(256,256,1,1,0), nn.ReLU(), nn.MaxPool2d(2, 2), nn.Conv2d(256.384,3,1,1), nn.ReLU(), nn.Conv2d(384.384,1,1,0), nn.ReLU(), nn.Conv2d(384.384,1,1 ,0), nn.ReLU(), nn.MaxPool2d(2,2), nn.Conv2d(384,1024,3,1,1), nn.ReLU(), nn.Conv2d(1024,1024,1, 1,0), nn.ReLU(), nn.Conv2d(1024,1024,1,1,0), nn.ReLU(), nn.MaxPool2d(2,2), nn.AdaptiveAvgPool2d((1,1) ), nn.Softmax(dim=1), ) self.initialization()

Example #30

source file:ResNet2015.pyOutside ofRedes PytorchcomMY license5voicesPython Examples of arch.nn.AdaptiveAvgPool2d (60)Python Examples of arch.nn.AdaptiveAvgPool2d (61)
def __init__(self, cfg, logger): ''' block, BLOCK_LIST, in_dim, class_num, BASE=64, use_fc=True, CONV1=(7,2,3), MAX_POOL=True, pré-treinado=False ''' super (ResNet,self).__init__() self.head_conv = nn.Sequential( nn.Conv2d(cfg.IN_DIM,cfg.BASE,cfg.CONV1[0],cfg.CONV1[1],cfg.CONV1[2], bias=False), nn.BatchNorm2d(cfg.BASE), nn.ReLU(inplace=True),) se cfg.MAX_POOL: self.maxpool_1 = nn.MaxPool2d(3,2,1) else: self.maxpool_1 = nn .Sequential() block = BottleNeck if cfg.BLOCK == 'Engpass' sonst BasicBlock b_ = block.expansion self.layer_1 = self._make_layer(block,cfg.BASE,cfg.BASE*b_,cfg.BLOCK_LIST[0], cfg.STRIDE1,cfg.OPERATION) self.layer_2 = self._make_layer(block,cfg.BASE*b_,cfg.BASE*2*b_,cfg.BLOCK_LIST[1],2,cfg.OPERATION) self.layer_3 = selbst ._make_layer(block,cfg.BASE*2*b_,cfg.BASE*4*b_,cfg.BLOCK_LIST[2],2,cfg.OPERATION) self.layer_4 = self._make_layer(block,cfg.BASE*4* b_,cfg.BASE*8*b_,cfg.BLOCK_LIST[3],2,cfg.OPERATION) final_feature = cfg.BASE*4*b_ if cfg.BLOCK_LIST[3] == 0 else cfg.BASE *8*b_if cfg.USE_FC: self.avgpool_1 = nn.AdaptiveAvgPool2d((1,1)) self.fc_1 = nn.Sequential( nn.Flatten(), nn.Linear(final_feature,cfg.CLASS_NUM),) filhost: self.avgpool_1 = nn.Sequential() self.fc_1 = nn.Sequential() wenn cfg.DROPOUT > 0: self.dropout = nn.Dropout(p=cfg.DROPOUT) filhos: self.dropout = nn.Sequential() self.logger = Logger selbst.vortrainiert = cfg.PRETRAINED selbst._initialization()

Videos

1. torch.nn.ConvTranspose2d Explained
(Machine Learning with Pytorch)
2. 9. Understanding torch.nn
(Abhishek Thakur)
3. Deep Fake Images and Video with SimSwap
(Nicholas Renotte)
4. [Live Machine Learning Research] Plain Self-Ensembles (I actually DISCOVER SOMETHING) - Part 1
(Yannic Kilcher)
5. Explainable AI explained! | #6 Layerwise Relevance Propagation with MRI data
(DeepFindr)
6. Lesson 12: Deep Learning Part 2 2018 - Generative Adversarial Networks (GANs)
(Jeremy Howard)

References

Top Articles
Latest Posts
Article information

Author: Chrissy Homenick

Last Updated: 15/05/2023

Views: 6222

Rating: 4.3 / 5 (74 voted)

Reviews: 89% of readers found this page helpful

Author information

Name: Chrissy Homenick

Birthday: 2001-10-22

Address: 611 Kuhn Oval, Feltonbury, NY 02783-3818

Phone: +96619177651654

Job: Mining Representative

Hobby: amateur radio, Sculling, Knife making, Gardening, Watching movies, Gunsmithing, Video gaming

Introduction: My name is Chrissy Homenick, I am a tender, funny, determined, tender, glorious, fancy, enthusiastic person who loves writing and wants to share my knowledge and understanding with you.