The following are30Code examples forTorch.nn.AdaptiveAvgPool2d().You can upvote those you like or downvote those you don't and go back to the original project or source file by following the links above each example. You can also check all available functions/classes of the moduleLanterna.nn, or attemptsthe search function.
Example 1
source file:rfp.pyOutside ofmm detectioncomApache 2.0 License | 7voices | ![]() ![]() |
def __init__(self, in_channels, out_channels, dilatations=(1, 3, 6, 1)): super().__init__() Assertion dilatations[-1] == 1 self.aspp = nn.ModuleList() for dilatation in Dilations: kernel size = 3 if dilation > 1 else 1, padding = dilation if dilation > 1 else 0, conv = nn.Conv2d(in_channels, out_channels, kernel_size=kernel_size, step=1, dilation=dilation, padding= padding, bias =True) self.aspp.append(conv) self.gap = nn.AdaptiveAvgPool2d(1) self.init_weights()
Configure a Windows host for Ansible...
Example #2
source file:detnet_backbone.pyOutside ofcascade-rcnn_PytorchcomMY license | 6voices | ![]() ![]() |
def __init__(self, block, layer, num_classes=1000): self.inplanes = 64 super(DetNet, self).__init__() self.conv1 = nn.Conv2d(3, 64, kernel_size=7, passo=2, padding =3, bias=False) self.bn1 = nn.BatchNorm2d(64) self.relu = nn.ReLU(inplace=True) self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) self .layer1 = self._make_layer(block, 64, Schichten[0]) self.layer2 = self._make_layer(block, 128, Schichten[1], passo=2) self.layer3 = self._make_layer(block, 256, Schichten [2], passo=2) self.layer4 = self._make_new_layer(256, Schichten[3]) self.layer5 = self._make_new_layer(256, Schichten[4]) self.avgpool = nn.AdaptiveAvgPool2d(1) self. fc = nn.Linear(1024, num_classes) para m em self.modules(): if isinstance(m, nn.Conv2d): n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels m. weight.data.normal_(0, math.sqrt(2. / n)) elif isinstance(m, nn.BatchNorm2d): m.weight.data.fill_(1) m.bias.data.zero_()
Example #3
source file:detnet_backbone.pyOutside ofcascade-rcnn_PytorchcomMY license | 6voices | ![]() ![]() |
def __init__(self, block, layer, num_classes=1000): self.inplanes = 64 super(DetNet, self).__init__() self.conv1 = nn.Conv2d(3, 64, kernel_size=7, passo=2, padding =3, bias=False) self.bn1 = nn.BatchNorm2d(64) self.relu = nn.ReLU(inplace=True) self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) self .layer1 = self._make_layer(block, 64, Schichten[0]) self.layer2 = self._make_layer(block, 128, Schichten[1], passo=2) self.layer3 = self._make_layer(block, 256, Schichten [2], passo=2) self.layer4 = self._make_new_layer(256, Schichten[3]) self.layer5 = self._make_new_layer(256, Schichten[4]) self.avgpool = nn.AdaptiveAvgPool2d(1) self. fc = nn.Linear(1024, num_classes) para m em self.modules(): if isinstance(m, nn.Conv2d): n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels m. weight.data.normal_(0, math.sqrt(2. / n)) elif isinstance(m, nn.BatchNorm2d): m.weight.data.fill_(1) m.bias.data.zero_()
Example #4
source file:ResNetV2.pyOutside ofRedes PytorchcomMY license | 6voices | ![]() ![]() |
def __init__(self,block,block_list): super(ResNet,self).__init__() self.head_conv = nn.Sequential( nn.Conv2d(3,64,7,2,3,bias=False), nn.BatchNorm2d (64), nn.ReLU(inplace=True),) self.maxpool_1 = nn.MaxPool2d(3,2,1) b_ = block.expansion self.layer_1 = self._make_layer(block,64,64*b_,block_list [0],1) self.layer_2 = self._make_layer(block,64*b_,128*b_,block_list[1],2) self.layer_3 = self._make_layer(block,128*b_,256*b_,block_list [2],2) self.layer_4 = self._make_layer(block,256*b_,512*b_,block_list[3],2) self.avgpool_1 = nn.AdaptiveAvgPool2d((1,1)) self.fc_1 = nn .Sequencial( nn.Flatten(), nn.Linear(512*b_,1000), nn.Softmax(dim = 1),) self._initialization()
Example #5
source file:ResNeXt2016.pyOutside ofRedes PytorchcomMY license | 6voices | ![]() ![]() |
def __init__(self,block,block_list,cardinality): super(ResNet,self).__init__() self.head_conv = nn.Sequential( nn.Conv2d(3,64,7,2,3,bias=False), nn .BatchNorm2d(64), nn.ReLU(inplace=True),) self.maxpool_1 = nn.MaxPool2d(3,2,1) b_ = block.expansion self.layer_1 = self._make_layer(block,64,128*b_,block_list [0],1,Kardinalität) self.layer_2 = self._make_layer(block,128*b_,256*b_,block_list[1],2,cardinalidade) self.layer_3 = self._make_layer(block,256*b_,512 *b_,Blockliste[2],2,Kardinalität) self.layer_4 = self._make_layer(block,512*b_,1024*b_,block_list[3],2,Kardinalität) self.avgpool_1 = nn.AdaptiveAvgPool2d((1, 1)) self.fc_1 = nn.Sequential( nn.Flatten(), nn.Linear(1024*b_,1000), nn.Softmax(dim = 1),) self._initialization()
Example #6
source file:DenseNet2016.pyOutside ofRedes PytorchcomMY license | 6voices | ![]() ![]() |
def __init__(self,k,block_list,num_init_features=64, bn_size=4, drop_rate=0, memory_ficient=False): super(DenseNet,self).__init__() self.head_conv = nn.Sequential( nn.Conv2d(3, num_init_features,7,2,3,bias=False), nn.BatchNorm2d(num_init_features), nn.ReLU(inplace=True),) self.maxpool_1 = nn.MaxPool2d(3,2,1) self.dense_body, self. final_channels = self._make_layers(num_init_features, bn_size,block_list,k,drop_rate, memory_eficiente) self.avgpool_1 = nn.AdaptiveAvgPool2d((1,1)) self.fc_1 = nn.Sequential( nn.Flatten(), nn.Linear( self.final_channels,1000), nn.Softmax(dim = 1),) self._initialization()
Example #7
source file:MobileNet.pyOutside ofRedes PytorchcomMY license | 6voices | ![]() ![]() |
def __init__(self,): super(MobileNet_V1,self).__init__() self.conv = nn.Sequential(BasicConv(3,32,3,2,1), DPConv(32,64,1), DPConv(64,128 ,2), DPConv(128.128,1), DPConv(128.256,2), DPConv(256.256,1), DPConv(256.512,2), DPConv(512.512,1), DPConv(512.512,1), DPConv(512.512, 1), DPConv(512.512,1), DPConv(512.512,1), DPConv(512.1024,2), DPConv(1024,1024,1),) self.final = nn.Sequential( nn.AdaptiveAvgPool2d(1), nn .Flatten(), nn.Linear(1024,1000), nn.Softmax(dim=1) )
Example #8
source file:base.pyOutside ofrápido-MPN-COVcomMY license | 6voices | ![]() ![]() |
def _reconstruct_inception(self, basemodel): model = nn.Module() model.features = nn.Sequential(basemodel.Conv2d_1a_3x3, basemodel.Conv2d_2a_3x3, basemodel.Conv2d_2b_3x3, nn.MaxPool2d(kernel_size=3, stride=2), basemodel. Conv2d_3b_1x1, Basismodell.Conv2d_4a_3x3, nn.MaxPool2d(kernel_size=3, passo=2), Basismodell.Mixed_5b, Basismodell.Mixed_5c, Basismodell.Mixed_5d, Basismodell.Mixed_6a, Basismodell.Mixed_6b, Basismodell.Mixed_6c, Basismodell.Mixed_6c, Basismodell.Mixed_6a, Basismodell.Mixed_6b, Basismodell.Mixed_6c, Basedismodell. , basemodel.Mixed_7a, basemodel.Mixed_7b, basemodel.Mixed_7c) model.representation = nn.AdaptiveAvgPool2d((1, 1)) model.classifier = basemodel.fc model.representation_dim=basemodel.fc.weight.size(1) Rückgabemodell
Example #9
source file:simple_attention.pyOutside ofargus-freesoundcomMY license | 6voices | ![]() ![]() |
def __init__(self, num_classes, base_size=64, dropout=0.2, ratio=16, kernel_size=7): super().__init__() self.conv = nn.Sequential( ConvBlock(in_channels=3, out_channels=base_size), ConvBlock(in_channels=base_size, out_channels=base_size*2), ConvBlock(in_channels=base_size*2, out_channels=base_size*4), ConvBlock(in_channels=base_size*4, out_channels=base_size*8), ) self.attention = ConvolutionalBlockAttentionModule( base_size*8, ratio=ratio, kernel_size=kernel_size) self.avg_pool = nn.AdaptiveAvgPool2d(1) self.fc = nn.Sequential( nn.Dropout(dropout), nn.Linear(base_size*8, base_size*2), nn.PReLU(), nn.BatchNorm1d(base_size*2), nn.Dropout(dropout/2), nn.Linear(base_size*2, num_classes), )
Example #10
source file:operador.pyOutside ofFixed_SegcomApache 2.0 License | 6voices | ![]() ![]() |
def __init__(self, in_planes, out_planes, redução=1, norm_layer=nn.BatchNorm2d): super(FeatureFusion, self).__init__() self.conv_1x1 = ConvBnRelu(in_planes, out_planes, 1, 1, 0, has_bn=True, norm_layer=norm_layer, has_relu=True, has_bias=False) self.channel_attention = nn.Sequential( nn.AdaptiveAvgPool2d(1), ConvBnRelu(out_planes, out_planes // Reduzierung, 1, 1, 0, has_bn=False, norm_layer=norm_layer, has_relu=True, has_bias=False), ConvBnRelu(out_planes // Reduzierung, out_planes, 1, 1, 0, has_bn=False, norm_layer=norm_layer, has_relu=False, has_bias=False), nn.Sigmoid() )
Example #11
source file:roi_box_predictors.pyOutside ofRes2Net-Masks rcnncomMY license | 6voices | ![]() ![]() |
def __init__(self, config, in_channels): super(FastRCNNPredictor, self).__init__() behaupten in_channels ist nicht None num_inputs = in_channels num_classes = config.MODEL.ROI_BOX_HEAD.NUM_CLASSES self.avgpool = nn.AdaptiveAvgPool2d(1) self.cls_score = nn.Linear(num_inputs, num_classes) num_bbox_reg_classes = 2 if config.MODEL.CLS_AGNOSTIC_BBOX_REG else num_classes self.bbox_pred = nn.Linear(num_inputs, num_bbox_reg_classes * 4) nn.init.normal_(self.cls_score.weight, mean=0, std=0,01) nn.init.constant_(self.cls_score.bias, 0) nn.init.normal_(self.bbox_pred.weight, mean=0, std=0,001) nn.init.constant_(self.bbox_pred.bias, 0)
Example #12
source file:MobileNetV3.pyOutside ofMobileNetV3-pytorchcomMY license | 6voices | ![]() ![]() |
def __init__(self, inplanes, num_classes, expplanes1, expplanes2): super(LastBlockLarge, self).__init__() self.conv1 = nn.Conv2d(inplanes, expplanes1, kernel_size=1, bias=False) self.bn1 = nn. BatchNorm2d(expplanes1) self.act1 = HardSwish(inplace=True) self.avgpool = nn.AdaptiveAvgPool2d(1) self.conv2 = nn.Conv2d(expplanes1, expplanes2, kernel_size=1, stride=1) self.act2 = HardSwish( inplace=True) self.dropout = nn.Dropout(p=0.2, inplace=True) self.fc = nn.Linear(expplanes2, num_classes) self.expplanes1 = expplanes1 self.expplanes2 = expplanes2 self.inplanes = inplanes self.num_classes = Anzahl_Klassen
Example #13
source file:MobileNetV3.pyOutside ofMobileNetV3-pytorchcomMY license | 6voices | ![]() ![]() |
def __init__(self, inplanes, num_classes, expplanes1, expplanes2): super(LastBlockSmall, self).__init__() self.conv1 = nn.Conv2d(inplanes, expplanes1, kernel_size=1, bias=False) self.bn1 = nn. BatchNorm2d(expplanes1) self.act1 = HardSwish(inplace=True) self.se = SqEx(expplanes1) self.avgpool = nn.AdaptiveAvgPool2d(1) self.conv2 = nn.Conv2d(expplanes1, expplanes2, kernel_size=1, stride= 1, bias=False) self.act2 = HardSwish(inplace=True) self.dropout = nn.Dropout(p=0.2, inplace=True) self.fc = nn.Linear(expplanes2, num_classes) self.expplanes1 = expplanes1 self .expplanes2 = expplanes2 self.inplanes = inplanes self.num_classes = num_classes
Example #14
source file:squeeze_excitation.pyOutside ofParsing-R-CNNcomMY license | 6voices | ![]() ![]() |
def __init__(self, inplanes, kernel=3, redução=16, with_padding=False): super(GDWSe2d, self).__init__() if with_padding: padding = kernel // 2 else: padding = 0 self.globle_dw = nn. Conv2d(inplanes, inplanes, kernel_size=kernel, padding=padding, stride=1, groups=inplanes, bias=False) self.bn = nn.BatchNorm2d(inplanes) self.relu = nn.ReLU(inplace=True) self. avg_pool = nn.AdaptiveAvgPool2d(1) self.fc = nn.Sequential( nn.Linear(Inplanes, Inplanes // Reduktion), nn.ReLU(inplace=True), nn.Linear(Inplanes // Reduktion, Inplanes), nn .Sigmoid() ) self._init_weights()
Example #15
source file:Outputs.pyOutside ofParsing-R-CNNcomMY license | 6voices | ![]() ![]() |
def __init__(self, dim_in): super().__init__() self.dim_in = dim_in self.cls_on = cfg.FAST_RCNN.CLS_ON self.reg_on = cfg.FAST_RCNN.REG_ON if self.cls_on: self.cls_score = nn.Linear (self.dim_in, cfg.MODEL.NUM_CLASSES) init.normal_(self.cls_score.weight, std=0.01) init.constant_(self.cls_score.bias, 0) # self.avgpool = nn.AdaptiveAvgPool2d(1) if self .reg_on: if cfg.FAST_RCNN.CLS_AGNOSTIC_BBOX_REG: # bg und fg self.bbox_pred = nn.Linear(self.dim_in, 4 * 2) sonst: self.bbox_pred = nn.Linear(self.dim_in, 4 * cfg.MODEL. NUM_CLASSES) init.normal_(self.bbox_pred.weight, std=0.001) init.constant_(self.bbox_pred.bias, 0)
Example #16
source file:roi_box_predictors.pyOutside ofR2CNN.pytorchcomMY license | 6voices | ![]() ![]() |
def __init__(self, config, in_channels): super(FastRCNNPredictor, self).__init__() behaupten in_channels ist nicht None num_inputs = in_channels num_classes = config.MODEL.ROI_BOX_HEAD.NUM_CLASSES self.avgpool = nn.AdaptiveAvgPool2d(1) self.cls_score = nn.Linear(num_inputs, num_classes) num_bbox_reg_classes = 2 if config.MODEL.CLS_AGNOSTIC_BBOX_REG else num_classes self.bbox_pred = nn.Linear(num_inputs, num_bbox_reg_classes * 4) self.quad_pred = nn.Linear(num_inputs, num_bbox_reg_classes * 8) init. normal_(self.cls_score.weight, average=0, std=0,01) nn.init.constant_(self.cls_score.bias, 0) nn.init.normal_(self.bbox_pred.weight, average=0, std= 0,001) nn.init.constant_(self.bbox_pred.bias, 0) nn.init.normal_(self.quad_pred.weight, mean=0, std=0,001) nn.init.constant_(self.quad_pred.bias, 0)
Example #17
source file:context_block.pyOutside ofmm detectioncomApache 2.0 License | 5voices | ![]() ![]() |
def __init__(self, in_channels, ratio, pooling_type='att', fusion_types=('channel_add', )): super(ContextBlock, self).__init__() assert pooling_type in ['avg', 'att'] assert isinstance( fusion_types, (list, tuple)) valid_fusion_types = ['channel_add', 'channel_mul'] assert all([f in valid_fusion_types for f in fusion_types]) assert len(fusion_types) > 0, 'mindestens eine Fusion sollte verwendet werden' self . in_channels = in_channels self.ratio = proporção self.planes = int(in_channels * proporção) self.pooling_type = pooling_type self.fusion_types = fusion_types if pooling_type == 'att': self.conv_mask = nn.Conv2d(in_channels, 1, kernel_size = 1) self.softmax = nn.Softmax(dim=2) sonst: self.avg_pool = nn.AdaptiveAvgPool2d(1) se 'channel_add' em fusion_types: self.channel_add_conv = nn.Sequential( nn.Conv2d(self.in_channels, self .planes, kernel_size=1), nn.LayerNorm([self.planes, 1, 1]), nn.ReLU(inplace=True), # yapf: disable nn.Conv2d(self.planes, self.in_channels, kernel_size = 1)) filho: eu .channel_add_conv = Keine, wenn 'channel_mul' in fusion_types: self.channel_mul_conv = nn.Sequential( nn.Conv2d(self.in_channels, self.planes, kernel_size=1), nn.LayerNorm([self.planes, 1, 1] ), nn .ReLU(inplace=True), # yapf: nn.Conv2d(self.planes, self.in_channels, kernel_size=1) deaktivieren sonst: self.channel_mul_conv = Keine self.reset_parameters()
Example #18
source file:merge_cells.pyOutside ofmm detectioncomApache 2.0 License | 5voices | ![]() ![]() |
def __init__(self, in_channels=Nenhum, out_channels=Nenhum, **kwargs): super().__init__(in_channels, out_channels, **kwargs) self.global_pool = nn.AdaptiveAvgPool2d((1, 1))
Example #19
source file:ResNet.pyOutside oftransfer learningcomMY license | 5voices | ![]() ![]() |
def __init__(self, block, layer, num_classes=1000,zero_init_residual=False, groups=1, width_per_group=64, norm_layer=None): super(ResNet, self).__init__() if norm_layer ist None: norm_layer = nn.BatchNorm2d self.inplanes = 64 self.groups = Gruppen self.base_width = width_per_group self.conv1 = nn.Conv2d(3, self.inplanes, kernel_size=7, passo=2, padding=3, bias=False) self.bn1 = norm_layer (self.inplanes) self.relu = nn.ReLU(inplace=True) self.maxpool = nn.MaxPool2d(kernel_size=3, passo=2, padding=1) self.layer1 = self._make_layer(block, 64, Schichten [0], norm_layer=norm_layer) self.layer2 = self._make_layer(block, 128, Schichten[1], passo=2, norm_layer=norm_layer) self.layer3 = self._make_layer(block, 256, Schichten[2], stride=2, norm_layer=norm_layer) self.layer4 = self._make_layer(block, 512, layer[3], stride=2, norm_layer=norm_layer) self.avgpool = nn.AdaptiveAvgPool2d((1, 1)) self.fc = nn.Linear(512 * block.expansion, num_classes) für m in self.modules(): if isinstance(m, nn.Co nv2d): nn.i nit.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu') elif isinstance(m, (nn.BatchNorm2d, nn.GroupNorm)): nn.init.constant_(m. peso, 1) nn. init.constant_(m.bias, 0) if zero_init_residual: for m in self.modules(): if isinstance(m, Gargalo): nn.init.constant_(m.bn3.weight, 0) elif isinstance(m, BasicBlock ): nn.init.constant_(m.bn2.weight, 0)
Example #20
source file:Darknet2016.pyOutside ofRedes PytorchcomMY license | 5voices | ![]() ![]() |
def __init__(self,block_config): super(_DarkNet,self).__init__() self.headconv = nn.Sequential(BasicConv(3,32,3,1,1)) self.in_dim = 32 self.layers = self. _make_layers(block_config) self.final = nn.Sequential( nn.AdaptiveAvgPool2d(1), nn.Flatten(), nn.Linear(1024,1000), nn.Softmax(dim=1) )
Example #21
source file:SEmodule2017.pyOutside ofRedes PytorchcomMY license | 5voices | ![]() ![]() |
def __init__(self,in_dim,ratio): super(SElayer,self).__init__() self.gap = nn.AdaptiveAvgPool2d((1,1)) Reduced_dim = max(1, in_dim//ratio) self.fc1 = nn .Sequential(nn.Flatten(), nn.Linear(in_dim, Reduced_dim), #_Swish(), nn.ReLU(inplace=True), nn.Linear(reduce_dim, in_dim), nn.Softmax(dim=1), )
Example #22
source file:ShuffleNet.pyOutside ofRedes PytorchcomMY license | 5voices | ![]() ![]() |
def __init__(self,block_config,groups): super(_ShuffleNet,self).__init__() self.head_conv = nn.Sequential( nn.Conv2d(3,24,3,2,1,bias=False), nn.BatchNorm2d (24), nn.ReLU(inplace=True),) self.maxpool_1 = nn.MaxPool2d(3,2,1) self.layer_1 = self._make_layer(24,block_config[0][1],block_config[0] [0],Gruppen) self.layer_2 = self._make_layer(block_config[0][1],block_config[1][1],block_config[1][0],grupos) self.layer_3 = self._make_layer(block_config[ 1][1],block_config[2][1],block_config[2][0],grupos) self.avgpool_1 = nn.AdaptiveAvgPool2d((1,1)) self.fc_1 = nn.Sequential( nn.Flatten( ), nn.Linear(1536,1000), nn.Softmax(dim = 1),)
Example #23
source file:EfficientNet2019.pyOutside ofRedes PytorchcomMY license | 5voices | ![]() ![]() |
def __init__(self): super(EfficientNet_B0,self).__init__() self.HeadConv = _Conv(3,32,3,2,1) self.MBConv1_1 = _MBConv(32,16,1,3,1,0.2, 4) self.MBConv6_1 = _MBConv(16,24,6,3,2,0.2,4) self.MBConv6_2 = _MBConv(24,24,6,3,1,0.2,4) self.MBConv6_3 = _MBConv(24, 40,6,5,2,0.2,4) self.MBConv6_4 = _MBConv(40,40,6,5,1,0.2,4) self.MBConv6_5 = _MBConv(40,80,6,3,2,0,2, 4) self.MBConv6_6 = _MBConv(80,80,6,3,1,0.2,4) self.MBConv6_7 = _MBConv(80,80,6,3,1,0.2,4) self.MBConv6_8 = _MBConv(80,112, 6,5,1,0.2,4) self.MBConv6_9 = _MBConv(112,112,6,5,1,0.2,4) self.MBConv6_10 = _MBConv(112,112,6,5,1,0.2,4) self.MBConv6_11 = _MBConv(112,192,6,5,2,0.2,4) self.MBConv6_12 = _MBConv(192,192,6,5,1,0.2,4) self.MBConv6_13 = _MBConv(192,192,6,5,1,0.2,4) self.MBConv6_14 = _MBConv(192,192,6,5,1,0.2,4) self.MBConv6_15 = _MBConv(192,320,6,3,1,0.2,4) self.logits = nn.Sequential( #_Conv(320,1280 ,1,1,0), nn.AdaptiveAvgPool2d((1,1)), nn.Flatten(), nn.Linear(320,1000), nn.Softmax(dim=1))
Example #24
source file:RegNet2020.pyOutside ofRedes PytorchcomMY license | 5voices | ![]() ![]() |
def __init__(self, w_in, nc): super(AnyHead, self).__init__() self.avg_pool = nn.AdaptiveAvgPool2d((1, 1)) self.fc = nn.Linear(w_in, nc, bias=True)
Example #25
source file:RegNet2020.pyOutside ofRedes PytorchcomMY license | 5voices | ![]() ![]() |
def __init__(self, w_in, w_se): super(SE, self).__init__() self.avg_pool = nn.AdaptiveAvgPool2d((1, 1)) self.f_ex = nn.Sequential( nn.Conv2d(w_in, w_se, 1, bias=True), nn.ReLU(inplace=True), nn.Conv2d(w_se, w_in, 1, bias=True), nn.Sigmoid(), )
Example #26
source file:MnasNet2018.pyOutside ofRedes PytorchcomMY license | 5voices | ![]() ![]() |
def __init__(self,in_dim,ratio): super(_SElayer,self).__init__() self.gap = nn.AdaptiveAvgPool2d((1,1)) Reduced_dim = max(1, in_dim//ratio) self.fc1 = nn .Sequential(nn.Flatten(), nn.Linear(in_dim, Reduced_dim), nn.ReLU(inplace=True), nn.Linear(reduce_dim, in_dim), nn.Softmax(dim=1),)
Example #27
source file:MnasNet2018.pyOutside ofRedes PytorchcomMY license | 5voices | ![]() ![]() |
def __init__(self): super(MnasNet_A1,self).__init__() self.HeadConv = _Conv(3,32,3,2,1) self.Seq_1 = _SepConv(32,16,3) self.MBConv6_1 = _MBConv( 16,24,6,3,2) self.MBConv6_2 = _MBConv(24,24,6,3,1) self.MBConv3_1 = _MBConv(24,40,3,5,2,4) self.MBConv3_2 = _MBConv( 40,40,3,5,1,4) self.MBConv3_3 = _MBConv(40,40,3,5,1,4) self.MBConv6_3 = _MBConv(40,80,6,3,2) self.MBConv6_4 = _MBConv(80,80,6,3,1) self.MBConv6_5 = _MBConv(80,80,6,3,1) self.MBConv6_6 = _MBConv(80,80,6,3,1) self.MBConv6_7 = _MBConv( 80,112,6,3,1,4) self.MBConv6_8 = _MBConv(112,112,6,3,1,4) self.MBConv6_9 = _MBConv(112,160,6,5,2,4) self.MBConv6_10 = _MBConv(160,160, 6,5,1,4) self.MBConv6_11 = _MBConv(160,160,6,5,1,4) self.MBConv6_12 = _MBConv(160,320,6,3,1) self.logits = nn.Sequential( nn.AdaptiveAvgPool2d( (1,1)), nn.Flatten(), nn.Linear(320,1000), nn.Softmax(dim=1))
Example #28
source file:effnet.pyOutside ofRedes PytorchcomMY license | 5voices | ![]() ![]() |
def __init__(self, w_in, w_se): super(SE, self).__init__() self.avg_pool = nn.AdaptiveAvgPool2d((1, 1)) self.f_ex = nn.Sequential( nn.Conv2d(w_in, w_se,". ". ". 1, bias=True), Swish(), nn.Conv2d(w_se, w_in, 1, bias=True), nn.Sigmoid(), );
Example #29
source file:NIN2013.pyOutside ofRedes PytorchcomMY license | 5voices | ![]() ![]() |
def __init__(self): super(NIN,self).__init__() self.net_layers=nn.Sequential( nn.Conv2d(3,96,11,4,0), nn.ReLU(), nn.Conv2d(96 ,96,1,1,0), nn.ReLU(), nn.Conv2d(96,96,1,1,0), nn.ReLU(), nn.Conv2d(96,256,5,1,2), nn.ReLU(), nn.Conv2d(256,256,1,1,0), nn.ReLU(), nn.Conv2d(256,256,1,1,0), nn.ReLU(), nn.MaxPool2d(2, 2), nn.Conv2d(256.384,3,1,1), nn.ReLU(), nn.Conv2d(384.384,1,1,0), nn.ReLU(), nn.Conv2d(384.384,1,1 ,0), nn.ReLU(), nn.MaxPool2d(2,2), nn.Conv2d(384,1024,3,1,1), nn.ReLU(), nn.Conv2d(1024,1024,1, 1,0), nn.ReLU(), nn.Conv2d(1024,1024,1,1,0), nn.ReLU(), nn.MaxPool2d(2,2), nn.AdaptiveAvgPool2d((1,1) ), nn.Softmax(dim=1), ) self.initialization()
Example #30
source file:ResNet2015.pyOutside ofRedes PytorchcomMY license | 5voices | ![]() ![]() |
def __init__(self, cfg, logger): ''' block, BLOCK_LIST, in_dim, class_num, BASE=64, use_fc=True, CONV1=(7,2,3), MAX_POOL=True, pré-treinado=False ''' super (ResNet,self).__init__() self.head_conv = nn.Sequential( nn.Conv2d(cfg.IN_DIM,cfg.BASE,cfg.CONV1[0],cfg.CONV1[1],cfg.CONV1[2], bias=False), nn.BatchNorm2d(cfg.BASE), nn.ReLU(inplace=True),) se cfg.MAX_POOL: self.maxpool_1 = nn.MaxPool2d(3,2,1) else: self.maxpool_1 = nn .Sequential() block = BottleNeck if cfg.BLOCK == 'Engpass' sonst BasicBlock b_ = block.expansion self.layer_1 = self._make_layer(block,cfg.BASE,cfg.BASE*b_,cfg.BLOCK_LIST[0], cfg.STRIDE1,cfg.OPERATION) self.layer_2 = self._make_layer(block,cfg.BASE*b_,cfg.BASE*2*b_,cfg.BLOCK_LIST[1],2,cfg.OPERATION) self.layer_3 = selbst ._make_layer(block,cfg.BASE*2*b_,cfg.BASE*4*b_,cfg.BLOCK_LIST[2],2,cfg.OPERATION) self.layer_4 = self._make_layer(block,cfg.BASE*4* b_,cfg.BASE*8*b_,cfg.BLOCK_LIST[3],2,cfg.OPERATION) final_feature = cfg.BASE*4*b_ if cfg.BLOCK_LIST[3] == 0 else cfg.BASE *8*b_if cfg.USE_FC: self.avgpool_1 = nn.AdaptiveAvgPool2d((1,1)) self.fc_1 = nn.Sequential( nn.Flatten(), nn.Linear(final_feature,cfg.CLASS_NUM),) filhost: self.avgpool_1 = nn.Sequential() self.fc_1 = nn.Sequential() wenn cfg.DROPOUT > 0: self.dropout = nn.Dropout(p=cfg.DROPOUT) filhos: self.dropout = nn.Sequential() self.logger = Logger selbst.vortrainiert = cfg.PRETRAINED selbst._initialization()